Подключение пульта к ардуино. Ардуино: инфракрасный пульт и приемник

  • Входное напряжение: 2,7 ... 5,5 В
  • Потребляемый ток: 0,65 … 1,05 мА (при Vсс = 5В) номинально 0,9 мА
  • Несущая частота: 38 кГц
  • Длинна световой волны: 850 … 1050 нм (пропускаемая фильтром более 80%)
  • Чувствительность: 0,17… 30000 мW/м2 (к мощности светового потока)
  • Расстояние приёма: до 45 м
  • Рабочая температура: -25 … 85 °C
  • Угол направленности: ±45°

Все модули линейки "Trema" выполнены в одном формате

Подключение:

Модуль подключается к любому цифровому выводу arduino. В комплекте имеется кабель для быстрого и удобного подключения к Trema Shield .

Модуль удобно подключать 3 способами, в зависимости от ситуации:

Способ - 1: Используя проводной шлейф и Piranha UNO


Библиотека использует второй аппаратный таймер,

НЕ ВЫВОДИТЕ СИГНАЛЫ ШИМ НА 3 ИЛИ 11 ВЫВОД!

Подробнее про установку библиотеки читайте в нашей ..

Дополнительная информация по работе с модулем:

Пакеты: Практически все пульты отправляют не только информационный пакет (указывающий тип устройства и код нажатой кнопки), но и пакеты повтора, сообщающие устройству об удержании нажатой кнопки. Таким образом принимающее устройство может реагировать на нажатие кнопки однократно или в течении всего времени её удержания.

Например: нажимая и удерживая кнопку с номером телевизионного канала, телевизор переключится на данный канал только один раз. В то время, как нажимая и удерживая кнопку увеличения громкости, телевизор будет её увеличивать в течении всего времени удержания кнопки.

Количество информационных пакетов у большинства пультов равно одному, но некоторые устройства, например кондиционеры, используют 2, 3 и более информационных пакетов.

Состав пакетов: Информационный пакет несёт информацию о коде производителя, типе устройства, коде нажатой кнопки и т.д. Пакеты повтора могут частично или полностью совпадать с информационным пакетом, копировать его биты с инверсией, или не нести никакой информации, представляя последовательность из нескольких одинаковых, для каждого пакета повтора, битов.

Длительность пауз между пакетами: обычно не превышает 200мс.

Протоколы передачи данных: определяют следующие, основные, параметры:

  • несущую частоту;
  • способ кодирования информации, длительность импульсов и пауз передаваемых битов;
  • количество информационных пакетов:
  • состав информационного пакета и пакетов повторов;
  • длительность пауз между пакетами;
  • наличие и форму сигналов Start, Stop и Toggle;

Несущая частота: у большинства пультов равна 38 кГц, именно на эту частоту настроен Trema ИК-приёмник .

Кодирование информации: это принцип передачи битов данных. Выделим три основных вида кодирования, при которых каждый бит передаётся последовательностью из одного импульса и одной паузы:

  • кодирование длиной импульсов - сначала передаётся импульс, длина которого зависит от значения передаваемого бита, затем следует пауза, длина которой не зависит от значения бита. Например: в протоколе SIRC (Sony), длина импульса для бита «1» = 1200мкс, а для бита «0» = 600мкс, длина пауз всегда равна 600мкс. Таким образом можно отличить «1» от «0» по длине импульса.
  • кодирование длинной пауз - сначала передаётся импульс, длина которого не зависит от значения передаваемого бита, затем следует пауза, длина которой зависит от значения бита. Например: в протоколе NEC, длина паузы для бита «1» = 1687,5мкс, а для бита «0» = 562,5мкс, длина импульсов всегда равна 562,5мкс. Таким образом можно отличить «1» от «0» по длине паузы.
  • бифазное кодирование - длина импульса равна длине паузы, а их последовательность определяет тип передаваемого бита. Например: в протоколе RS5 (Philips), для бита «1» импульс следует за паузой, а для бита «0» пауза следует за импульсом. Для протокола NRC (Nokia), наоборот, для бита «1» пауза следует за импульсом, а для бита «0» импульс следует за паузой.

Сигналы Start, Stop и Toggle: по своему названию располагаются в начале, конце или середине пакета.

Stop: При кодировании длинной паузы, нельзя определить значение последнего бита в пакете, так как после пакета следует большая пауза, и последний бит будет всегда определяться как «1», поэтому в пакет добавляется сигнал Stop представляющий из себя импульс не несущий никакой информации.

Start: При бифазном кодировании требуется подать сигнал Start, так как невозможно начать передачу пакета с паузы.

Toggle: Это бит, который меняет своё значение при каждом новом нажатии на кнопку, используется в протоколах RS5, RS5X, RS6 (Philips), где пакеты повторов полностью повторяют данные информационного пакета. Таким образом принимающее устройство может отличить удержание кнопки от её повторного нажатия.

Примеры:

Проверка наличия данных поступивших с ИК-пульта , осуществляется функцией check(). Эта функция реагирует на нажатие кнопок ИК-пульта , но если её вызывать с параметром true , то она будет реагировать и на удержание кнопок.

Чтение данных с любого пульта, реагируем только на нажатие кнопок:

#include // Подключаем библиотеку для работы с ИК-приёмником iarduino_IR_RX IR(7); // Объявляем объект IR, с указанием вывода к которому подключён ИК-приёмник void setup(){ Serial.begin(9600); // Инициируем передачу данных в монитор последовательного порта, на скорости 9600 бит/сек IR.begin(); // Инициируем работу с ИК-приёмником } void loop(){ if(IR.check()){ // Если в буфере имеются данные, принятые с пульта (была нажата кнопка) Serial.println(IR.data, HEX); // Выводим код нажатой кнопки Serial.println(IR.length); // Выводим количество бит в коде } }

В данном скетче функция check() вызывается без аргументов, значит и реагирует она только на нажатия кнопок ИК-пульта .

Чтение данных с любого пульта, реагируем на удержание кнопок:

#include // Подключаем библиотеку для работы с ИК-приёмником iarduino_IR_RX IR(6); // Объявляем объект IR, с указанием вывода к которому подключён ИК-приёмник void setup(){ Serial.begin(9600); // Инициируем передачу данных в монитор последовательного порта, на скорости 9600 бит/сек IR.begin(); // Инициируем работу с ИК-приёмником } void loop(){ if(IR.check(true)){ // Если в буфере имеются данные, принятые с пульта (удерживается кнопка) Serial.println(IR.data, HEX); // Выводим код нажатой кнопки Serial.println(IR.length); // Выводим количество бит в коде } }

В данном скетче функция check() вызывается с параметром true , значит и реагирует она как на нажатия, так и на удержания кнопок ИК-пульта .

Чтение данных с любого пульта, с указанием как реагировать на какие кнопки.

#include // Подключаем библиотеку для работы с ИК-приёмником iarduino_IR_RX IR(6); // Объявляем объект IR, с указанием вывода к которому подключён ИК-приёмник // bool flgKey1 = false; uint32_t codKey1 = 0xFF30CF; // Определяем флаг нажатия и код кнопки 1 bool flgKey2 = false; uint32_t codKey2 = 0xFF18E7; // Определяем флаг нажатия и код кнопки 2 bool flgKey3 = false; uint32_t codKey3 = 0xFF7A85; // Определяем флаг нажатия и код кнопки 3 bool flgKey = false; uint32_t tmrKey = 0; // Определяем флаг разрещающий вывод данных в монитор и время последнего нажатия кнопки. // void setup(){ // Serial.begin(9600); // Инициируем передачу данных в монитор последовательного порта, на скорости 9600 бит/сек IR.begin(); // Инициируем работу с ИК-приёмником } // // void loop(){ // if(IR.check(true)){ // Если в буфере имеются данные, принятые с пульта (удерживается кнопка), то... if(millis()-200 > tmrKey){ // Если с последней поступившей команды прошло более 200 мс, то flgKey1=false; // Считаем что кнопка 1 не удерживается flgKey2=false; // Считаем что кнопка 2 не удерживается flgKey3=false; // Считаем что кнопка 3 не удерживается } tmrKey = millis(); flgKey=true; // Сохраняем время последней реакции на пульт и азрешаем вывод данных if(IR.data==codKey1){ if(flgKey1){flgKey=false;} flgKey1=true; }else{flgKey1=false;} // Запрещаем вывод данных кнопки 1 при её удержании if(IR.data==codKey2){ if(flgKey2){flgKey=false;} flgKey2=true; }else{flgKey2=false;} // Запрещаем вывод данных кнопки 2 при её удержании if(IR.data==codKey3){ if(flgKey3){flgKey=false;} flgKey3=true; }else{flgKey3=false;} // Запрещаем вывод данных кнопки 3 при её удержании if(flgKey){ // Если вывод данных разрешен, то... Serial.println(IR.data, HEX); // Выводим код нажатой кнопки Serial.println(IR.length); // Выводим количество бит в коде } // } // } //

В данном скетче функция check() вызывается с параметром true , значит она реагирует как на нажатия, так и на удержания кнопок ИК-пульта . Но вывод данных в монитор последовательного порта осуществляется только при установленном флаге flgKey , который сбрасывается при удержании кнопок с кодами 0xFF30CF , 0xFF18E7 и 0xFF7A85 . Получается что на 3 кнопки скетч реагирует только при нажатии, а на остальные кнопки, как на нажатие, так и на удержание.

Чтение данных только с тех пультов, которые работают по указанному протоколу:

#include // Подключаем библиотеку для работы с ИК-приёмником iarduino_IR_RX IR(5); // Объявляем объект IR, с указанием вывода к которому подключён ИК-приёмник void setup(){ Serial.begin(9600); // Инициируем передачу данных в монитор последовательного порта, на скорости 9600 бит/сек IR.begin(); // Инициируем работу с ИК-приёмником IR.protocol("Ae`` `|LJ` @@@@BPBp"); // Указываем протокол передачи данных, на который следует реагировать } void loop(){ if(IR.check(true)){ // Если в буфере имеются данные, принятые с пульта (удерживается кнопка) Serial.println(IR.data, HEX); // Выводим код нажатой кнопки Serial.println(IR.length); // Выводим количество бит в коде } }

В данном скетче, в коде setup(), указан протокол передачи данных, который редко совпадает у разных производителей ИК-пультов . Значит функция check() в коде loop() будет реагировать только на те ИК-пульты , которые поддерживают указанный протокол.

Получение протокола передачи данных и типа кодировки:

#include // Подключаем библиотеку для работы с ИК-приёмником iarduino_IR_RX IR(4); // Объявляем объект IR, с указанием вывода к которому подключён ИК-приёмник void setup(){ Serial.begin(9600); // Инициируем передачу данных в монитор последовательного порта, на скорости 9600 бит/сек IR.begin(); // Инициируем работу с ИК-приёмником } void loop(){ if(IR.check()){ // Если в буфере имеются данные, принятые с пульта (была нажата кнопка) Serial.println(IR.protocol()); // Выводим строку протокола передачи данных } }

В данном примере описано как получить протокол передачи данных ИК-пультов . В статье , описано, как передавать коды кнопок по указанному протоколу.

Таким образом, можно создать скетч ИК-передатчика для имитации сигналов различных ИК-пультов . В результате, устройства будут реагировать на ИК-передатчик , как на собственный ИК-пульт .

Описание основных функций библиотеки:

Подключение библиотеки:

#include // Подключаем библиотеку, для работы с ИК-приёмником. iarduino_IR_RX IR(№_ВЫВОДА [, ИНВЕРСИЯ]); // Объявляем объект IR, с указанием номера вывода, к которому подключён ИК-приёмник. // Вторым параметром, типа bool, можно указать, что данные с приёмника являются инверсными.

Функция begin();

  • Назначение: инициализация работы с ИК-приёмником
  • Синтаксис: begin();
  • Параметры: Нет.
  • Возвращаемые значения: Нет.
  • Примечание: Вызывается 1 раз в коде setup.
  • Пример:
IR.begin(); // Инициируем работу с ИК-приёмником

Функция check();

  • Назначение: Проверка наличия принятых с пульта данных.
  • Синтаксис: check([ УДЕРЖАНИЕ ]);
  • Параметры:
    • УДЕРЖАНИЕ - необязательный параметр, типа bool - указывающий что необходимо реагировать на удержание кнопок пульта.
  • Возвращаемые значения: bool - приняты или нет, данные с пульта.
  • Примечание: Если функция вызвана без параметра, или он равен false, то функция будет реагировать только на сигналы с пульта при нажатии его кнопок, а если указать true, то функция будет реагировать, как на нажатие, так и на удержание кнопок пульта.
  • Пример:
if(IR.check()){ ... ;} // Если приняты данные с пульта, при нажатии его кнопки if(IR.check(true)){ ... ;} // Если принимаются данные с пульта, при удержании кнопки

Функция protocol();

  • Назначение: Получение, установка или сброс протокола передачи данных.
  • Синтаксис: protocol([ ПАРАМЕТР ]);
  • Получение протокола: Если функция вызвана без параметра, то она вернёт строку из 25 символов + символ конца строки. Биты данной строки, несут информацию о типе протокола передачи данных пульта, данные которого были приняты последними. Данную строку можно использовать для установки протокола ИК-передатчику, или ИК-приёмнику (см.ниже).
  • Установка протокола: Если функция вызвана с параметром в виде строки из 25 символов протокола + символ конца строки, то после этого, функция chek(), будет реагировать только на пульты, соответствующие указанному протоколу передачи данных.
  • Сброс протокола: Если функция вызвана с параметром IR_CLEAN, то функция chek() опять станет реагировать на сигналы с любых пультов.
  • Получение параметров протокола: Если функция вызвана с параметром int, от 0 до 17, то она вернёт не строку протокола, а значение типа int с одним из параметров протокола передачи данных пульта, данные которого были приняты последними:
    • 0 - тип кодировки:
      • IR_UNDEFINED - тип кодировки не определён;
      • IR_PAUSE_LENGTH - кодирование длинной паузы;
      • IR_PULSE_LENGTH - кодирование длинной (шириной) импульса (ШИМ);
      • IR_BIPHASIC - бифазное кодирование;
      • IR_BIPHASIC_INV - бифазное кодирование с инверсными битами;
      • IR_NRC - пакеты повтора идентичны, а первый и последний пакеты специальные;
      • IR_RS5 - кодировка PHILIPS с битом toggle;
      • IR_RS5X - кодировка PHILIPS с битом toggle;
      • IR_RS6 - кодировка PHILIPS с битом toggle.
    • 1 - несущая частота передачи данных (в кГц);
    • 2 - заявленное количество информационных бит в 1 пакете;
    • 3 - заявленное количество информационных бит в пакете повтора;
    • 4 - длительность паузы между пакетами (в мс);
    • 5 - длительность импульса в стартовом бите (в мкс);
    • 6 - длительность паузы в стартовом бите (в мкс);
    • 7 - длительность импульса в стоповом бите (в мкс);
    • 8 - длительность паузы в стоповом бите (в мкс);
    • 9 - длительность импульса в бите рестарт или toggle (в мкс);
    • 10 - длительность паузы в бите рестарт или toggle (в мкс);
    • 11 - позиция бита рестарт или toggle в пакете (№ бита);
    • 12 - максимальная длительность импульса в информационных битах (в мкс);
    • 13 - минимальная длительность импульса в информационных битах (в мкс);
    • 14 - максимальная длительность паузы в информационных битах (в мкс);
    • 15 - минимальная длительность паузы в информационных битах (в мкс);
    • 16 - флаг наличия стартового бита (true/false);
    • 17 - флаг наличия стопового бита (true/false);
    • 18 - флаг наличия бита рестарт или toggle (true/false);
    • 19 - тип пакета повтора (0-нет, 1-с инверсными битами, 2-идентичен информационному, 3-уникален);
  • Возвращаемые значения: Зависят от наличия и типа параметра.
  • Примечание: Если ранее был установлен протокол, то попытка получения протокола, или параметров протокола, вернёт значения установленного ранее протокола, а не протокола передачи данных пульта, данные которого были приняты последними.
  • Пример:
IR.protocol("AeQQV~zK]Kp^KJp[@@@@@@@Bp"); // Устанавливаем протокол. Теперь приёмник будет получать данные, только от пультов телевизора ELENBERG. IR.protocol(IR_CLEAN); // Сбрасываем ранее установленный протокол. Теперь приёмник снова будет реагировать на любые пульты. if(IR.check()){ Serial.println(IR.protocol()); } // Получаем протокол. Как только приёмник получит данные, в мониторе высветится строка из 25 символов протокола. if(IR.check()){ Serial.println(IR.protokol(12)); } // Получаем один из параметров протокола. Как только приёмник получит данные, в мониторе отобразится максимальная длительность импульса информационного бита в микросекундах.

Переменная data

  • Значение: Возвращает код кнопки, принятый с пульта;
  • Тип данных: uint32_t.
if(IR.check()){ Serial.println(IR.data); } // Выводим код нажатой кнопки, если он принят

Переменная length

  • Значение: Возвращает размер кода кнопки, в битах;
  • Тип данных: uint8_t.
if(IR.check()){ Serial.println(IR.length); } // Выводим размер кода нажатой кнопки, если он принят

Переменная key_press

  • Значение: Возвращает флаг, указывающий на то, что кнопка пульта нажимается а не удерживается;
  • Тип данных: bool.
if(IR.check(true)){ if(IR.key_press){Serial.println("PRESS");} // Текст будет выведен 1 раз, когда кнопка нажимается else {Serial.println("HOLD ");} // Текст будет выводиться постоянно, пока кнопка удерживается }

Применение:

  • управление роботами, движущимися, летающими и плавающими моделями, бытовой и специализированной техникой.
  • включение/выключение освещения, обогрева, вентиляции, полива и т.д.
  • открывание/закрывание дверей, жалюзи, мансардных окон, форточек и т.д.
  • Входное напряжение: 4,0 ... 5,5 В (номинально 5 В)
  • Потребляемый ток: до 100 мА в импульсном режиме (при Vсс = 5 В)
  • Длинна световой волны: 940 нм (пиковое значение)
  • Максимальная частота сигнала: до 10 МГц
  • Расстояние передачи: до 10 м (при Vcc = 5 В)
  • Рабочая температура: -25 … 85 °C
  • Угол направленности: 120° (с потерей мощности < 50%)

Все модули линейки "Trema" выполнены в одном формате

Подключение:

Модуль удобно подключать 3 способами, в зависимости от ситуации:

Способ - 1: Используя проводной шлейф и Piranha UNO

Библиотека использует второй аппаратный таймер,

НЕ ВЫВОДИТЕ СИГНАЛЫ ШИМ НА 3 ИЛИ 11 ВЫВОД!

Подробнее про установку библиотеки читайте в нашей ..

Дополнительная информация по работе с модулем:

Пакеты: Практически все пульты отправляют не только информационный пакет (указывающий тип устройства и код нажатой кнопки), но и пакеты повтора, сообщающие устройству об удержании нажатой кнопки. Таким образом принимающее устройство может реагировать на нажатие кнопки однократно или в течении всего времени её удержания.
Например: нажимая и удерживая кнопку с номером телевизионного канала, телевизор переключится на данный канал только один раз. В то время, как нажимая и удерживая кнопку увеличения громкости, телевизор будет её увеличивать в течении всего времени удержания кнопки.

Количество информационных пакетов у большинства пультов равно одному, но некоторые устройства, например кондиционеры, используют 2, 3 и более информационных пакетов.

Состав пакетов: Информационный пакет несёт информацию о коде производителя, типе устройства, коде нажатой кнопки и т.д. Пакеты повтора могут частично или полностью совпадать с информационным пакетом, копировать его биты с инверсией, или не нести никакой информации, представляя последовательность из нескольких одинаковых, для каждого пакета повтора, битов.

Длительность пауз между пакетами: обычно не превышает 200мс.

Протоколы передачи данных: определяют следующие, основные, параметры:

Несущая частота: у большинства пультов равна 38 кГц, именно на эту частоту настроен Trema ИК-приёмник .

Кодирование информации: это принцип передачи битов данных. Выделим три основных вида кодирования, при которых каждый бит передаётся последовательностью из одного импульса и одной паузы:

Сигналы Start, Stop и Toggle: по своему названию располагаются в начале, конце или середине пакета.

Stop: При кодировании длинной паузы, нельзя определить значение последнего бита в пакете, так как после пакета следует большая пауза, и последний бит будет всегда определяться как «1», поэтому в пакет добавляется сигнал Stop представляющий из себя импульс не несущий никакой информации.

Start: При бифазном кодировании требуется подать сигнал Start, так как невозможно начать передачу пакета с паузы.

Toggle: Это бит, который меняет своё значение при каждом новом нажатии на кнопку, используется в протоколах RS5, RS5X, RS6 (Philips), где пакеты повторов полностью повторяют данные информационного пакета. Таким образом принимающее устройство может отличить удержание кнопки от её повторного нажатия.

кодирование длиной импульсов - сначала передаётся импульс, длина которого зависит от значения передаваемого бита, затем следует пауза, длина которой не зависит от значения бита. Например: в протоколе SIRC (Sony), длина импульса для бита «1» = 1200мкс, а для бита «0» = 600мкс, длина пауз всегда равна 600мкс. Таким образом можно отличить «1» от «0» по длине импульса.

кодирование длиной пауз - сначала передаётся импульс, длина которого не зависит от значения передаваемого бита, затем следует пауза, длина которой зависит от значения бита. Например: в протоколе NEC, длина паузы для бита «1» = 1687,5мкс, а для бита «0» = 562,5мкс, длина импульсов всегда равна 562,5мкс. Таким образом можно отличить «1» от «0» по длине паузы.

бифазное кодирование - длина импульса равна длине паузы, а их последовательность определяет тип передаваемого бита. Например: в протоколе RS5 (Philips), для бита «1» импульс следует за паузой, а для бита «0» пауза следует за импульсом. Для протокола NRC (Nokia), наоборот, для бита «1» пауза следует за импульсом, а для бита «0» импульс следует за паузой.

Примеры:

Однократная передача данных:

#include // Подключаем библиотеку для работы с ИК-передатчиком iarduino_IR_TX VD(10); // Объявляем объект VD, с указанием вывода к которому подключён ИК-передатчик void setup(){ VD.begin(); // Инициируем работу с ИК-передатчиком VD.send(0x00FFA25D); // Однократно отправляем код 0x00FFA25D, без пакетов повторов } void loop(){} // Arduino отправит код 0x00FFA25D, сигнализируя о своём включении

Передача данных с пакетами повторов:

#include // Подключаем библиотеку для работы с ИК-передатчиком iarduino_IR_TX VD(2); // Объявляем объект VD, с указанием вывода к которому подключён ИК-передатчик void setup(){ pinMode(3,INPUT); // Конфигурируем 3 вывод, к которому подключена кнопка, как вход pinMode(4,INPUT); // Конфигурируем 4 вывод, к которому подключена кнопка, как вход pinMode(5,INPUT); // Конфигурируем 5 вывод, к которому подключена кнопка, как вход VD.begin(); // Инициируем работу с ИК-передатчиком } void loop(){ if(digitalRead(3)){VD.send(0x00FFA25D, true);} // Если нажата кнопка, подключённая к 3 выводу, то отправляем код 0x00FFA25D, а при её удержании, отправляем пакеты повторов, так как функция вызвана с параметром true if(digitalRead(4)){VD.send(0x00FF629D, true);} // Если нажата кнопка, подключённая к 4 выводу, то отправляем код 0x00FF629D, а при её удержании, отправляем пакеты повторов, так как функция вызвана с параметром true if(digitalRead(5)){VD.send(0x00FFE21D, true);} // Если нажата кнопка, подключённая к 5 выводу, то отправляем код 0x00FFE21D, а при её удержании, отправляем пакеты повторов, так как функция вызвана с параметром true }

Передача данных с указанием протокола:

#include // Подключаем библиотеку для работы с ИК-передатчиком iarduino_IR_TX VD(5); // Объявляем объект VD, с указанием вывода к которому подключён ИК-передатчик void setup() { VD.begin(); // Инициируем работу с ИК-передатчиком pinMode(6,INPUT); // Конфигурируем 6 вывод, к которому подключена кнопка, как вход pinMode(7,INPUT); // Конфигурируем 7 вывод, к которому подключена кнопка, как вход pinMode(8,INPUT); // Конфигурируем 8 вывод, к которому подключена кнопка, как вход VD.protocol("AeQQV~zK]Kp^KJp[@@@@@@@Bp"); // Указываем протокол передачи данных от пульта ELENBERG } // Получить строку протокола, можно нажав любую кнопку пульта телевизора // и вызвав одноименную функцию приёмника, без параметров void loop(){ if(digitalRead(4)){VD.send(0x417, true);} // отправляем сигнал ON/OFF (с пакетами повторов, пакеты повторяются через заданный в протоколе интервал времени) if(digitalRead(5)){VD.send(0x425, true);} // отправляем сигнал VOL- (с пакетами повторов, пакеты повторяются через заданный в протоколе интервал времени) if(digitalRead(6)){VD.send(0x427);} // отправляем сигнал VOL+ (без пакетов повторов, громкость будет увеличиваться быстрее, так как функция вызывается в цикле без интервалов) }

Данный пример показывает, как передатчик может полностью имитировать сигналы других ИК-пультов дистанционного управления.

Полученную строку протокола, нужно передать в качестве параметра функции protocol(), после чего можно отправлять коды кнопок функцией send(). В результате, устройства будут реагировать на ИК-передатчик , как на собственный ИК-пульт .

Описание основных функций библиотеки:

Подключение библиотеки:

#include // Подключаем библиотеку, для работы с ИК-передатчиком. iarduino_IR_TX VD(№_ВЫВОДА[,ИНВЕРСИЯ]); // Объявляем объект VD, с указанием номера вывода, к которому подключён ИК-передатчик. // Вторым параметром, типа bool, можно указать, что данные на передатчик требуется инвертировать.

Функция begin();

  • Назначение: инициализация работы с ИК-передатчиком
  • Синтаксис: begin();
  • Параметры: Нет.
  • Возвращаемые значения: Нет.
  • Примечание: Вызывается 1 раз в коде setup.
  • Пример:
VD.begin(); // Инициируем работу с ИК-передатчиком

Функция send();

  • Назначение: Передача данных.
  • Синтаксис: send(ДАННЫЕ [, УДЕРЖАНИЕ ]);
  • Параметры:
    • ДАННЫЕ - код, типа uint32_t, который требуется передать;
    • УДЕРЖАНИЕ - необязательный параметр, типа bool - указывающий что необходимо передавать не только код, но и пакеты повторов. Параметр имеет смысл, если функция вызывается пока удерживается кнопка.
  • Возвращаемые значения: Нет.
  • Примечание: Если функция вызвана без параметра УДЕРЖАНИЕ, или он равен false, то функция, при каждом её вызове, однократно передаст указанный код. Если функция вызвана с параметром УДЕРЖАНИЕ равным true, то функция подавляет дребезг кнопки и отправляет пакеты повторов (с указанным в протоколе интервалом) при её удержании.
  • Пример:
VD.send(0xCCDDEEFF); // Отправляем код 0xCCDDEEFF. Если функцию вызывать постоянно, в цикле, то она каждый раз будет отправлять этот код. VD.send(0xCCDDEEFF, true); // Отправляем код 0xCCDDEEFF. Если функцию вызывать постоянно, в цикле, то она отправит код только в первый раз, а далее будет отправлять пакеты повторов, в соответствии с указанным протоколом передачи данных.

Функция protocol();

  • Назначение: Установка протокола передачи данных.
  • Синтаксис: protocol(СТРОКА);
  • Параметры:
    • СТРОКА - состоящая из 25 символов протокола + символ конца строки. Данную строку можно получить вызвав одноимённую функцию, без параметров, для приёмника.
  • Возвращаемые значения: bool - строка содержит корректные данные о протоколе или нет.
  • Примечание: Функция устанавливает протокол передачи данных, таким образом ИК-передатчик может имитировать сигналы обычных пультов. После вызова данной функции, передачи данных функцией send() будут осуществляться по новому протоколу. Протокол передачи данных по умолчанию, соответствует пульту «Car mp3».
  • Пример:
VD.protocol("AeQQV~zK]Kp^KJp[@@@@@@@Bp"); // Указываем протокол передачи данных от пульта ELENBERG. // Теперь передатчик будет отправлять данные, кодируя их, в соответствии с указанным протоколом. // Получить строку протокола, можно нажав любую кнопку пульта телевизора и вызвав одноименную функцию для ИК-приёмника, без параметров.

Переменная frequency:

  • Значение: Устанавливает несущую частоту передачи данных в кГц;
  • Тип данных: uint8_t;
  • Примечание: Если переменной не присваивать значение, то передача ведётся на частоте указанной в протоколе. Если указать значение 0, то данные будут передаваться без модуляции.
VD.frequency=36; // Устанавливаем несущую частоту передачи данных в 36 кГц. VD.send(0xCCDDEEFF); // Отправляем данные с несущей частотой 36 кГц. VD.send(0xABCDEF); // Отправляем данные с несущей частотой 36 кГц. // Несущая частота будет изменена, если задать новое значение переменной frequency, или задать новый протокол передачи данных, через вызов функции protocol().

Применение:

  • управление роботами, движущимися, летающими и плавающими моделями, бытовой и специализированной техникой.
  • включение/выключение освещения, обогрева, вентиляции, полива и т.д.
  • открывание/закрывание дверей, жалюзи, мансардных окон, форточек и т.д.

Инфракрасный пульт дистанционного управления — один из самых простых способов взаимодействия с электронными приборами. Так, практически в каждом доме есть несколько таких устройств: телевизор, музыкальный центр, видеоплеер, кондиционер. Но самое интересное применение инфракрасного пульта — дистанционное правление роботом. Собственно, на этом уроке мы попытаемся реализовать такой способ управления с помощью популярного контроллера Ардуино Уно.

1. ИК-пульт

Что нужно для того, чтобы научить робота слушаться инфракрасного (ИК) пульта? Во-первых, нам потребуется сам пульт. Можно использовать обычный пульт от телевизора, а можно приобрести миниатюрный пульт от автомагнитолы. Именно такие пульты часто используются для управления роботами. На таком пульте есть 10 цифровых кнопок и 11 кнопок для манипуляции с музыкой: громкость, перемотка, play, stop, и т.д. Для наших целей более чем достаточно.

2. ИК-датчик

Во-вторых, для приема сигнала с пульта нам потребуется специальный ИК-датчик. Вообще, мы можем детектировать инфракрасное излучение обычным фотодиодом/фототранзистором, но в отличие от него, наш ИК-датчик воспринимает инфракрасный сигнал только на частоте 38 кГц (иногда 40кГц). Именно такое свойство позволяет датчику игнорировать много посторонних световых шумов от ламп освещения и солнца. Для этого урока воспользуемся популярным ИК-датчиком VS1838B , который обладает следующими характеристиками:
  • несущая частота: 38 кГц;
  • напряжение питания: 2,7 — 5,5 В;
  • потребляемый ток: 50 мкА.
Можно использовать и другие датчики, например: TSOP4838, TSOP1736, SFH506.

3. Подключение

Датчик имеет три вывода (три ноги). Если посмотреть на датчик со стороны приёмника ИК сигнала, как показано на рисунке,
  • то слева будет - выход на контроллер,
  • по центру - отрицательный контакт питания (земля),
  • и справа - положительный контакт питания (2.7 — 5.5В).
Принципиальная схема подключения Внешний вид макета

4. Программа

Подключив ИК-датчик будем писать программу для Ардуино Уно. Для этого воспользуемся стандартной библиотекой IRremote , которая предназначена как раз для упрощения работы с приёмом и передачей ИК сигналов. С помощью этой библиотеки будем принимать команды с пульта, и для начала, просто выводить их в окно монитора последовательного порта. Эта программа нам пригодится для того, чтобы понять какой код дает каждая кнопка. #include "IRremote.h" IRrecv irrecv(2); // указываем вывод, к которому подключен приемник decode_results results; void setup() { Serial.begin(9600); // выставляем скорость COM порта irrecv.enableIRIn(); // запускаем прием } void loop() { if (irrecv.decode(&results)) { // если данные пришли Serial.println(results.value, HEX); // печатаем данные irrecv.resume(); // принимаем следующую команду } } Загружаем программу на Ардуино. После этого, пробуем получать команды с пульта. Открываем монитор последовательного порта (Ctrl+Shift+M), берём в руки пульт, и направляем его на датчик. Нажимая разные кнопочки, наблюдаем в окне монитора соответствующие этим кнопкам коды. Проблема с загрузкой программы В некоторых случаях, при попытке загрузить программу в контроллер, может появиться ошибка: TDK2 was not declared In his scope Чтобы ее исправить, достаточно удалить два файла из папки библиотеки. Заходим в проводник. Переходим в папку, где установлено приложение Arduino IDE (скорее всего это «C:\Program Files (x86)\Arduino»). Затем в папку с библиотекой: …\Arduino\libraries\RobotIRremote , и удаляем файлы: IRremoteTools.cpp и IRremoteTools.h. Затем, перезапускаем Arduino IDE, и снова пробуем загрузить программу на контроллер.

5. Управляем светодиодом с помощью ИК-пульта

Теперь, когда мы знаем, какие коды соответствуют кнопкам пульта, пробуем запрограммировать контроллер на зажигание и гашение светодиода при нажатии на кнопки громкости. Для этого нам потребуется коды (могут отличаться, в зависимости от пульта):
  • FFA857 — увеличение громкости;
  • FFE01F — уменьшение громкости.
В качестве светодиода, используем встроенный светодиод на выводе №13, так что схема подключения останется прежней. Итак, программа: #include "IRremote.h" IRrecv irrecv(2); // указываем вывод, к которому подключен приемник decode_results results; void setup() { irrecv.enableIRIn(); // запускаем прием } void loop() { if (irrecv.decode(&results)) { // если данные пришли switch (results.value) { case 0xFFA857: digitalWrite(13, HIGH); break; case 0xFFE01F: digitalWrite(13, LOW); break; } irrecv.resume(); // принимаем следующую команду } } Загружаем на Ардуино и тестируем. Жмем vol+ — светодиод зажигается. Жмем vol- — гаснет. Теперь, зная как это все работает, можно вместо светодиода управлять двигателями робота, или другими самодельными микроэлектронными устройствами!

Всем доброго времени дня (или ночи, как вам удобно), начнём пожалуй с лирического вступления. Сейчас у многих дома есть телевизор с пультом ДУ(дистанционного управления), тюнер, DVD проигрыватель . Многие люди(и семьи) не представляют свой домашний быт без пульта ДУ в руке. Согласитесь - как здорово быть властелином домашней техники, и в любой момент диктовать этим железякам свою волю. В этой статье, мы бы хотели рассмотреть технологию дистанционного управления более углубленно, и привести некоторые примеры применения для своих нужд.

Итак, что же нам потребуется в качестве компонентов для нашего эксперимента? Как вариант продаются готовые модули ИК-пульта и ИК-приёмника . Но нам не хочется ждать и платить деньги, поэтому будет действовать более хардкорно. Возьмём за основу пульт ДУ неизвестного происхождения, также у нас имеется кусок платы от китайского тюнера на котором распаян инфракрасный приёмник. На фото ниже вы можете видеть эти комплектующие. Если признаться честно - пульт ДУ был найден среди ненужного барахла в столе офиса, а плата с ИК-приёмником была взята в ближайшей радиомастерской.

Ну так что же, как говаривал Ганнибал - "Вперед, на Карфаген" . Нам нужно просто выпаять приёмник и подключить его к плате Arduino по нижеследующей схеме...

  • Подключение ИК приёмника

ИК-приёмник который был выпаян из платы не имеет какой либо маркировки, это просто очередной неизвестный китайский радиокомпонент, каких выпущено было тысячи. Вкратце можно сказать - в одном корпусе он объединяет фотодиод, предусилитель и формирователь . На выходе формируется обычный ТТЛ-сигнал без заполнения, пригодный для дальнейшей обработки микроконтроллером. Несущая частота возможно(!) 36 кГц, но сейчас это не так важно... Просто попробуем его подключить к плате Arduino , условная схема даст нужную распиновку данного девайса. На схеме ниже, выделенное красным - это форма корпуса в котором выполнен наш ИК-приёмник , выделенное зеленым - распиновка по которой он подключен к плате Arduino .

Внимание!!! На просторах интернета есть много схем распиновок для приборов в таком корпусе(TSOP). Приведённая в этой статье распиновка может не совпадать с любыми найденными в интернете, но у нас всё подключено именно так. Если при подключении ИК-приёмник начинает греться - сразу же выключайте собранную схему, значит распиновка подключения не соответствует действительной, и вам придется подбирать её практически наугад. Именно так мы и сделали, потому что найденные в интернете схемы не подошли для нашего ИК-приёмника. Здесь, в общем то главное не спалить плату Arduino, действуйте осторожно!!!

  • Библиотека IRremote

Итак, всё подключено. Чтобы прочитать коды с пульта ДУ существует библиотека IRremote.h , именно с её помощью будем изучать наш пульт, а точнее коды кнопок. В дальнейшем используем прочитанные коды в своих целях. Скетч, при помощи которого будут прочитаны коды кнопок, представлен в примерах этой библиотеки, называется он IRrecvDemo. Внимание!!! Скетч при компиляции выдаёт ошибку, в самом начале нужно добавить еще две подключаемые библиотеки:

#include "boarddefs.h" //Добавочная библиотека #include "IRremote.h" #include "IRremoteInt.h" //Добавочная библиотека int RECV_PIN = 2; //Пин подключения выходного сигнала с ИК-приёмника //Создаём экземпляр класса IRrecv, в качестве параметра передаём пин подключения сигнала ИК-приёмника IRrecv irrecv(RECV_PIN); decode_results results; //Переменная для сохранения полученного кода нажатой кнопки void setup() { Serial.begin(9600); irrecv.enableIRIn(); //Включение ИК-приёмника в работу } void loop() { if (irrecv.decode(&results)) //Если произошло событие/кнопка была нажата { Serial.println(results.value, HEX); //Выводим в монитор порта код нажатой кнопки в шестнадцатиричном виде irrecv.resume(); //Считываем следующую значение/кнопку } delay(100); }

После того как скетч был залит в плату Arduino (мы используем Arduino Nano на шилде I/O Wireless Shield for Nano ), можно открыть монитор порта и посмотреть какие появляются коды при нажатии кнопок на пульте ДУ. Результат работы скетча представлен на скриншоте ниже:

Кстати, в качестве монитора порта мы используем свой проверенный софт, если кому интересно - почитать статью и скачать Serial Monitor Pro можно .

#define KEY_ONOFF 0x807F807F //Кнопка Включения/Выключения #define KEY_MUTE 0x807F48B7 //Кнопка Mute #define KEY_1 0x807F00FF //Кнопка 1 #define KEY_2 0x807FE01F //Кнопка 2 #define KEY_3 0x807F609F //Кнопка 3 #define KEY_4 0x807F20DF //Кнопка 4 #define KEY_5 0x807FD02F //Кнопка 5 #define KEY_6 0x807F50AF //Кнопка 6 #define KEY_7 0x807F10EF //Кнопка 7 #define KEY_8 0x807FF00F //Кнопка 8 #define KEY_9 0x807F708F //Кнопка 9 #define KEY_0 0x807FC837 //Кнопка 0

И вот теперь, в общем то всё готово для финального теста - это будет элементарный тест управления включением/выключением релейных модулей. Приведем небольшое задание:

  • Используем два релейных модуля
  • Реле №1 привязываем к кнопке "1" пульта
  • Реле №2 привязываем к кнопке "2" пульта
  • Включение любого из релейных модулей производится нажатием на кнопку к которой он привязан
  • Выключение любого из релейных модулей также производится нажатием на кнопку к которой он привязан
  • Нажатие на кнопку On/Off безусловно выключает оба релейных модуля(если они были включены, либо один из них включеный)

Скетч, который реализует вышеописанное задание:

#include "boarddefs.h" //Добавочная библиотека #include "IRremote.h" #include "IRremoteInt.h" //Добавочная библиотека #define KEY_ONOFF 0x807F807F //Кнопка Включения/Выключения #define KEY_1 0x807F00FF //Кнопка 1 #define KEY_2 0x807FE01F //Кнопка 2 #define RELOUT1 3 //Выходной порт для реле 1 #define RELOUT2 4 //Выходной порт для реле 2 int RECV_PIN = 2; IRrecv irrecv(RECV_PIN); decode_results results; static boolean REL1_ONOFF = false; static boolean REL2_ONOFF = false; void setup() { pinMode(RELOUT1, OUTPUT); pinMode(RELOUT2, OUTPUT); Serial.begin(9600); irrecv.enableIRIn(); // Start the receiver } void loop() { if (irrecv.decode(&results)) { switch(results.value) { case(KEY_ONOFF): REL1_ONOFF = false; REL2_ONOFF = false; break; case(KEY_1): if(REL1_ONOFF) REL1_ONOFF = false; else REL1_ONOFF = true; break; case(KEY_2): if(REL2_ONOFF) REL2_ONOFF = false; else REL2_ONOFF = true; break; } irrecv.resume(); } digitalWrite(RELOUT1, REL1_ONOFF); digitalWrite(RELOUT2, REL2_ONOFF); delay(100); }

И в конце статьи - видео, которое демонстрирует работу обоих скетчей. При желании и наличии творческой фантазии, можно расширить парк подключаемых модулей и управлять этим всем более продвинуто. Мы же в своей статье, постарались привести базовый пример применения этой технологии. Спасибо за внимание и приятного просмотра!!!

Пожалуйста, включите javascript для работы комментариев.
Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: